Mean-field vs. stochastic models for transcriptional regulation

نویسندگان

  • R. Blossey
  • C. V. Giuraniuc
چکیده

We introduce a minimal model description for the dynamics of transcriptional regulatory networks. It is studied within a mean-field approximation, i.e., by deterministic ode's representing the reaction kinetics, and by stochastic simulations employing the Gillespie algorithm. We elucidate the different results both approaches can deliver, depending on the network under study, and in particular depending on the level of detail retained in the respective description. Two examples are addressed in detail: the repressilator, a transcriptional clock based on a three-gene network realized experimentally in E. coli, and a bistable two-gene circuit under external driving, a transcriptional network motif recently proposed to play a role in cellular development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Stochastic Turbulence Models in Jet Acoustics

There are many approaches to determine the sound propagated from turbulent flows.  In hybrid methods, the turbulent noise source field is computed or modeled separately from the far-field calculations.  To have an initial and quick estimation of the sound propagation, less computationally intensive methods can be developed using stochastic models of the turbulent fluctuations.   In this paper, ...

متن کامل

Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations.

Transcriptional regulation is an inherently noisy process. The origins of this stochastic behavior can be traced to the random transitions among the discrete chemical states of operators that control the transcription rate and to finite number fluctuations in the biochemical reactions for the synthesis and degradation of transcripts. We develop stochastic models to which these random reactions ...

متن کامل

Stochastic and delayed stochastic models of gene expression and regulation.

Gene expression and gene regulatory networks dynamics are stochastic. The noise in the temporal amounts of proteins and RNA molecules in cells arises from the stochasticity of transcription initiation and elongation (e.g., due to RNA polymerase pausing), translation, and post-transcriptional regulation mechanisms, such as reversible phosphorylation and splicing. This is further enhanced by the ...

متن کامل

Applications of Little's Law to stochastic models of gene expression.

The intrinsic stochasticity of gene expression can lead to large variations in protein levels across a population of cells. To explain this variability, different sources of messenger RNA (mRNA) fluctuations ("Poisson" and "telegraph" processes) have been proposed in stochastic models of gene expression. Both Poisson and telegraph scenario models explain experimental observations of noise in pr...

متن کامل

Multi-species stochastic models: small RNA regulation of gene expression

The processes, resulting in the transcription of RNA, are intrinsically noisy. It was observed experimentally that the synthesis of mRNA molecules is driven by short, burst-like, events. An accurate prediction of the protein level often requires one to take these fluctuations into account. Here, we consider the stochastic model of gene expression regulated by small RNAs. Small RNA post-transcri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008